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DEFINITIONS
IDA publishes the following documents to report the recslts of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality end relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior indivduals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problem studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address .iudies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Document:
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings. (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that Is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.
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the consequences of fractal considerations in coagulation; to Dr. Ed Townsley (IDA),

Dr. John Cockayne (SAIC), and LCDR Harris OBryant (DNA) for their critical review of

the equations and mathematical formalism; to Dr. Darrel Baumgardner (NCAR) for helpful

comments concerning coagulation processes and the related aerosol size distribution; to

Dr. Ian Sykes (ARAP) fer pointing out the relationship between time averaging and plume
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EXECUTIVE SUMMARY

The Kuwaiti Oil Fires (KOF) of 1991 provided an opportunity for the Defense

Nuclear Agency (DNA) to address some key questions about the atmospheric transport of

particles that are relevant to the prediction of lat-time dust cloud motion. During the fires,

much data were collected by numerous U.S. and foreign scie~ntific agencies, and now the

critical issue is to assemble and organize a consistent set of measurements that can be

evaluated against computer models to predict small particle transport. These computer

models are required for the prediction of long-range transport of nuclear dust clouds and

for the prediction of smoke plumes from large oil, industrial, or urban fires that might

affect electro-optical sensor performance.

The KOF included features that were common with large forest fires, but the KOF

also had other characteristics that made them unique. When various long-range transport

codes were exercised for KOF-like problems, certain important deficiencies were

encountered. This raises the following questions: Are the mathematical and physical

models of the codes unsatisfactory? Are they being applied in situations for which they are

not intended?

A key requirement for predicting particle transport is the necessity to follow the

motion of some "tracer" particles (Lagrangian viewpoint). To be good tracers for modeling
purposes, the particles must remain physically and chemically inert during the transport

process. This condition of physical and chemical invariance can be termed a "frozen" or

"aged" state, and it will be reached when processes such as condensation and evaporation,

accretion of water vapor or other species, combustion and other chemical reactions, and

turbulent coagulation are no longer active. In this paper, we evaluate turbulent coagulation.

The other factors will be addressed in subsequent investigations.

The purpose of this paper is to make a preliminary assessment of the conditions

under which turbulent coagulation is or is not a significant factor. Clearly, if airborne

particles continue to coagulate or otherwise grow or shrink in appreciable amounts during

the transport phase, they cannot be unequivocally "tagged," and this potentially diminishes

* In dus repo t., uwqport me=s both advectian and diffusion.
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the validity of a transport calculation. The importance of this investigation is that it defines

the nearest spatial region where turbulent coagulation can be neglected, so that suitable

comparisons can be made between transport prediction models and experimental data

(notwithstanding other aging processes).

Specific reasons for evaluating turbulent coagulation in the KOF are as follows:

Initial reported aerosol particle/mass densities are extremely high, leading to
large coagulation growth rates.

" In the large Canadian forest fire of 1950, it was found that turbulent
coagulation was an important consideration.

" Mass injection into the atmosphere is comparable to or exceeds that of large
forest fires.

" There is a paucity of experimental data on turbulent coagulation in the
atmosphere, and it may be necessary to have a means of interpreting certain
KOF experimental data in this light.

" It is important to understand the dependence of turbulent coagulation on
windspeed (as it relates to transport time), turbulent kinetic energy dissipation
rate per unit mass, aerosol density and size distribution, and atmospheric
diffusion.

The analytic representation of collection kernels for existing turbulent
coagulation theories is based on spherical particles, but this may not be valid
for KOF. Therefore, it is necessary to have a simple way of estimating the
changes in coagulation dynamics as a function of aerosol shape.

The approach is to develop an analytical formulation of the spatial behavior of

aerosol density as the particles are can red along the turbulent wind field while

simultaneously undergoing coagulation. The KOF aerosol problem is one in which the

particle density of the "superplume" is formed by the merging of hundreds of individual

plumes. By example, Figure S-I shows three individual plumes merging into a super-

plume.

In this idealized figure, we hypothesize that there will be significant coagulation

effects as the flames emerge from each individual well since the particle density

(concentration) and mass density will be extremely high. As the individual plumes spread,

the concentration will decrease by geometric dilution caused by atmospheric turbulence and

coagulation. Ultimately, we postulate that the coagulation process becomes insignificant

when compared to other processes due to decreasing concentrations. The surfaces that
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define this transition are labeled "Coagulation Boundary." The shaded areas behind these

boundaries are the regions where coagulation is assumed to be insignificant.

*inU*A •Jmm_ ~.: %* ,'A UUWSMLR~Aw

- 'Uaa. ft1

Figure S-1. Geometric Viewpoint for Coagulation Considerations

The first step in understanding the behavior of aerosol concentration in the

superplume is to evaluate the contributions from an individual fire. Figure S-2 shows the
mathematical model for a single plume. This model can be applied to an individual source

or to the large plume provided that the appropriate initial conditions are present.

A(q) a AREA EXPRESSED AS
FUNCTION OF q

U(q) = WIND SPEED EXPRESSED
AS FUNCTION OF q

N(q) a AEROSOL CONCENTRATION
EXPRESSED AS FUNCTIONAl OF q

A 0aHIAL AM-U A
SOURMOP PLUW

Figure S-2. Model for Individual Plume
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In Figure S-2, qO is the distance from the source (oil well) where the kinetic energy

of the ejected oil is no longer a factor in the transport process. A(qo) is the cross-sectional

area associated with qo. These dimensions are estimated from visual observations. From

turbulent diffusion models, we obtain the approximation A(q) = (const) q2 for q > qo.

Using A(q) in conjunction with mathematical simplification of the collection kernels for

turbulent shear coagulation and turbulent inertial coagulation and an approximation for the

shape of the aerosol radius distribution based on the large Canadian forest fire of 1950, we

have been able to derive an expression for the aerosol concentration, N(q), as a function of

the turbulent dissipation rate, average windspeed, and source emission rate. For the

conditions assumed in this study, turbulent inertial coagulation is nearly two orders of

magnitude more effective than turbulent shear coagulation.

The concentration, N(q), along the center line trajectory of Figure S-2, is given by

N(q) = NI(q) Fc(q) (1)

where

SoI U(q) A(q) (2)

is the ordinary geometric spreading and
Fc exp-l 1 q1) 2! qqo (3)

is the part that is due to coagulation. In these equations, So is the particle emission rate,

U(q) is the windspeed along q, A(q) is the cross-sectional area of the plume, qo is the

starting point for the growth of the plume, and 11 is a characteristic length associated with

turbulent inertial coagulation. I1 is given by

5.3 RmrII I =- 3Ak•U2 '(4)

PA Ck X kU

where Rm is the mass emission rate, PA is the atmospheric mass density, rl is a

characteristic radius associated with the aerosol size shape distribution, Tk is the

Kolmogorov time scale for turbulence, Xk is the Kolmogorov length scale for turbulence,

and U is the average windspeed.
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Figure S-3 shows the general behavior of Fc as a function of q. The significant

features of this curve are the initial value of 1.0, the asymptotic behavior exp(-ll/qo), and

the spatial variation, which behaves as exp(-Ii/q). Turbulent inertial coagulation will not

have an important effect on particle transport when this factor does not vary significantly

over the range of interest (i.e., the spatial region where theoretical models of particle

transport are to be compared with experimental observations).

Iasymot value-

0 %

Figure S-3. Generic Behavior of rF as a Function of q

As shown in Figure S-3, the rate of spatial change of Fc decreases as the distance,

q, increases. By establishing a practical criterion consistent with the prediction capabilities

of particle transport codes, it is possible to establish a minimum range, qmin, beyond which

the effects of coagulation on particle transport should not be a concern. The criterion is
Fc(2 q min) 0.Tc(qmin) > 0.9 , (5)

and this inequality leads to the minimum range,

qmin > 5 11 , (6)

in the domain of interest [where exp(-/I/qo) << 1]. qmin is the distance beyond which In 1c

changes by less than 10 percent over qmin.
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The important point is that qo and the factors comprising I can be determined from

remote and in-situ measurements taken during the fires. Using estimated numbers for the

conditions of the KOF, we find that 11 can range up to several kilometers and, in some

cases, can be as large as 10 kilometers. On the other hand, qo may only range up to a few

hundred meters. At this time, there remains a large number of unknown factors in the

computation of 11. As the data reduction and analysis from the KOF continue, improved

estimates for / will become available, and we will be able to define more precisely the

regions where a self-consistent set of measurements can be used to validate particle

transport models.
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I. INTRODUCTION AND PURPOSE

This paper is part of an IDA Task about the "Characterization of Data and

Utilization of Advanced Technologies for Predicting the Atmospheric Transport of
Effluents from the Kuwaiti Oil Field Fires," being performed for the Defense Nuclear
Agency (DNA). The Kuwaiti Oil Fires (KOF) of 1991 provided an opportunity for DNA
to address some key questions about the atmospheric transport of particles that are relevant
to the prediction of late-time dust and smoke cloud motion. During the fires, much data
were collected by numerous U.S. and foreign scientific agencies, and now the critical issue

is to assemble and organize a consistent set of measurements that can be evaluated against
computer codes to predict small particle transport. These computer codes are required for
the prediction of long-range transport of nuclear dust clouds and for the prediction of
smoke plumes from large oil, industrial, or urban fires that might affect electro-optical

sensor performance.

The KOF included features that were common with large forest fires, but the KOF
also had other characteristics that made them unique. Bauer (Ref. 1) has provided an initial
assessment of the characterization of the KOF in relation to various kinds of large fires and
has identified certain key aspects that should be studied further. However, the reviewers of
his document pointed out that when various long-range transport codes were exercised on
KOF-like problems, the agreement was often not very good. This raises the following
questions: Are the m and physical models of the codes unsatisfactory? Are they
being applied in situations for which they are not intended?

A key requirement for predicting particle transport is the necessity to follow the

motion of some "tracer" particles (Lagrangian viewpoint). To be good tracers, the particles
must remain physically and chemically inert during the transport process. This condition of
physical and chemical invariance can be termed a "frozen" or "aged" state and applies to
those particles sufficiently far away from the sources of the plume. Some of the processes
that should be evaluated to ensure that transport calculations for the frozen state are
performed properly include condensation and evaporation, accretion of water vapor or

other species, combustion and other chemical reactions, Brownian coagulation, coagulation
in laminar shear flow, gravitational coagulation, turbulent shear coagulation, and turbulent
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inertial coagulation. Baumgardner (Rd. 2) has also suggested that turbulent mixing may

have an effect on aerosol growth under ertain circumstances. However, suire all of these

processes ar most active during the initial stages of mass injection into the atmosphere and

simple transport codes cannot be applied to a very young plume in which the tracer particles

are not yet "aged," it is important to establish a minimum range to which a transport code

can be applied for particles whose mass no longer changes with distance traveled.

In this paper, we make an initial assessment of the effects of turbulent shear

coagulation and turbulent inertial coagulation on aerosol growth in the KOF. The results

from this analysis may be useful in defining the "aged" regions that are applicable for

particle transport analysis. Specific reasons for evaluating these turbulent coagulation

processes in the KOF are as follows:

Initial reported aerosol particlelmass densities are extremely high, leading to
large coagulation growth rates.

In the Canadian fire of 1950, turbulent coagulation was an important
consideration (see Sections H and Ill).

• Mass ejection is comparable to or exceeds that of large forest fires.

* There is a paucity of experimental data on turbulent coagulation in the
atmosphere, and it may be necessary to have a means of interpreting certain
KOF experimental data in this light.

It is important to understand the dependence of turbulent coagulation on wind-
speed (as it relates to transport time), turbulent kinetic energy dissipation rate
per unit mass, aerosol density and size distribution, and atmospheric diffusion.

The analytic representation of collection kernels for existing turbulent
coagulation theories is based on spherical particles. While this may not be
valid for KOF, it is necessary to have a simple way of estimating the changes
in coagulation dynamics as a function of aerosol shape.

For mathematical simplicity, nearly all analyses involving the transport of particles
from large fires have assumed that these particles have a spherical shape. Since a sphere

has the smallest surface-to-volume (mass) ratio, these models usually place a lower bound

on the reaction rate per mass unit. However, unlike a forest fire, in which roughly half of
the condensed smoke particles are liquid and can be described a spheres, an oil fire presents

a particular problem since most of the pure soot particles are long strands of solid carbon or

more complex molecules and cannot really be described as spheres.
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Evans et al. (Ref. 3) have examined the particle size and shape distribution for oil

fires without interfeence from brne, water, nebulized tar, or dusty ambient aerosols and

have shown that these smoke particles are an agglomeration of individual spherules that

exhibit a strand-like behavior. A sample of their results is shown in Figure I-1, which

indicates that large numbers of strand-like particles may have existed in the many plumes

from the KOF. This particle configuration would have an important effect on the time scale

for kinetic processes and chemical reactions.

In recent years, more attention has been paid to the fractal description of the

irregular structures shown in Figure I-1 and on the effects of such irregularities on free

molecular agglomeration (Ref. 4). However, for the purposes of this study, we will

assume a spherical shape for all particles and apply a correction factor when more accurate

analysis becomes available.

|4V

*

~. ,dq ,

Figure I-1. Electron Micrograph of a Smoke Particle From a 1.0 m Diameter
Murban Crude Oil Fire (Source: Ref. 3)
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It should be emphasized that the selection of the turbulent coagulation processes as

the first of the aging processes to be considered does not imply that the others have been

deemed to be less important. Indeed, we plan to address the other aging processes in a

subsequent publication in which we will make use of the mathematical formalism

established in this study.

In Section II of this paper, we evaluate the dependence of turbulent shear

coagulation and turbulent inertial coagulation on aerosol concentration and mass density,
size distribution, and turbulence parameters. These considerations are then applied to the
KOF in Section IM, in which the effects of windspeed, atmosphere turbulence, and aerosol

emission rate are taken into account. Concluding remaks are rendered in Section TV.

1-4



H. TURBULENT COAGULATION PROCESSES

Because the conditions of the KOF have not been encountered before, we have a

limited data base for predicting the spatial regions and conditions for which turbulent
coagulation may be important. It is also unlikely that simple transport codes will be valid

for this type of assessment One of the reasons for examining the significance of turbulent

coagulation in the KOF is that the initial reported particle concentrations are extremely high.

For example, Hobbs and Radke (Ref. 5) report particle concentrations frequently exceeding

105 ct- 3 within a few kilometers from the fires and mass concentrations of the composite

plume -840 ptg w-3 at 20 km downwind for particles <3.5 pm in diameter. Johnson et al.

(Ref. 6) report mass densities between 500-1000 jig m-3 at distances greater than 200 kmi.

These observations suggest that coagulation processes could be important over a significant

spatial region. In this section and in Section II, we examine this conjecture.

Recently, Porch (Ref. 7) has examined the impact of turbulent coagulation on the

size distribution of aerosols produced by large fires in an attempt to understand the
phenomenon of Blue Moons. Porch used models where initial mass concentrations

for spherical smoke particles with radii less than 1 gm ranged from 5 x 10-9 to
5 x 10-8 g cm- 3 (or equivalently 5000 to 50,000 gg n- 3). These estimates appear to
apply over the fire itself, represented in Porch's model by a diameter of 400 km. In an

earlier study, Porch, Penner, and Gillette (Ref. 8) conducted a numerical study of the

effects of super-pm particles on the coagulation loss of submicron particles. The results of

these studies have shown that for particles with radii less than 0.1 im= Brownian

coagulation is more rapid than turbulent coagulation, while the latter mechanism generally

dominates for particle sizes of a few microns (Ref. 9).

The basic model for turbulent coagulation was developed by Saffman and Turner

(Ref. 10), who identified the two distinct coagulation mechanisms: turbulent shear

coagulation and turbulent inertial coagulation. Pruppacher and Klett (Ref. 9) have

succinctly summarized the salient features of turbulent coagulation. The first significant

feature is that turbulent coagulation applies to those aerosols of radius r << 4 where Ik is

the "Kolmorogov microscale length" (Refs. 9, 10). As shown in Table II-I, this is

Il-1



satisfied for the conditions of KOF, in which virtually all of the aerosol particles have

dimension less than the indicated values of )*. a

Table II-L Kolmogorov Microscales as a Function of
Energy Dissipation Rate, e

(cemlr 3) __________________

___- (C"i (s) Comment_

5 1.8x 10- 1Sx 10- 1  Applcable to obrat rm clouds where there is
sinai mean velodcy (Ret. 10)

100 8A.x 10-2 4.1 x 102 Cloudy air (Ref. 9)

1000 4.8 x 10-2 1.3 x 10-2 Relevant for conditions In turbulent cumulus
cbouds (Ref. 10)

2000 4.0 x 10e 9.3 x 10-3 Relevant to early stages of the plume In large
fires (Ref. 7)

8000 2.8 x 10-2 4.6 x 10-3 Exceptional case of turbulent shear In high

turbulence (Ref. 8)

Coagulation results from the velocity motion between particles. One method of

achieving relative motion is through significant small-scale velocity gradients in turbulent

flow. For the length scale of velocity gradients that are smaller than Xk, the coagulation

process is similar to that of the laminar shear flow case considered by Smoluchowski and

described in Pruppacher and Klett (Ref. 9). If mi, m2 are the masses of the coagulating

particles, and rl and r" are their respective radii, and p is the material intrinsic density

(assumed the same for both/all particles), and
m=4x Pr3.(21

then the collection kernel for urbulenm shear coagulation is given by (Refs. 9, 10):

K -1 3 s-1
Ks(mI'm 2 ) m'3(r+r 2 ) k T. c (2.2)

where zk is the "Kolmorogov time scale" (Refs. 9, 10).

Another method for producing a relative particle velocity is due to local turbulent •

accelerations. Particles of different mass respond differently to these accelerations by

having different viscous relaxation times associated with velocity equilibration. This leads

to the following expression for the collection kernel for trbulent inertial coagulation:
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KI~m 2x _L (r 2 1T21- r22 I ti-1' A; M 23
V1 m2~) 29 PA +r22)S(23

In this equation, PA is the air mass density, and -k and 'k art the Kolmogorov

microscales for length and time, which are given by

1/4

* ~k(m (2.4)

k ") s (2.5)

wher e is the dissipation rate of kinetic energy per unit mass (cm 2 s- 3) and v is the kinetic
viscosity of air (cm2 s-1). For the altitude range used in our study, we take the U.S.
Standard Atmosphere values of PA = 10-3 g c-- 3 and v = 0.172 cm2 s-1.

As observed in Eqs. (2.4) and (2.5), the dissipation rate is a key parameter.
0 Table 1I-I gives values of Lk and -rk for selected values of e. Examination of this table

shows that values of e ranging from 2000 to 8000 cm2 s- 3 are being considered in this

study.

Some of the important mathematical and physical charcteristics of the coagulation
process can be presented best by considering the time behavior of the aerosol distribution in
a spatially uniform medium. We let f(m, 0 dm be the number of particles per unit volume
lying in the mass range between m and m + dm, where f(m, t) is defined as the mass
density function (MDF). Using K(mi, m2) as the general description for either of the
collection kernels [(2.2) or (2.3)] gives the following equation for the time evolution of
f(m, t:

af 1 K fIn f' immm dml dn.S1 J (ml.m2)f(m) f m2) 8(m 1 2mlm m2

M 1 2

-f(m) fK(m, M2 ) f(m 2 ) dm2 (2.6)
m2

The first term in Eq. (2.6) is the growth term. The "1/2" appearing in front of the
integral is due to the fact that there is a reduction of one particle when two particles
coagulate. Inclusion of the Delta function 8(m - m, - m2) selects from all collisions only
those in which the mass, m, equals ml + m2. It is possible to integrate the growth term
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over either of the dummy variables ml or m2 in Eq. (2.6) and simplify the integral to the

more familiar form (Ref. 7),
1 f fK(m., m2)f(m.)f(m2)8(m-m ~m2 )dm, dm

2I m2

m

f K(m-m 2 ,m 2 )f(m m 2 )f(m 2 )dm 2  (2.7)

which is obtained by integration over ml. The second term in Eq. (2.6) is the loss due to

coagulation and is the integration over all possible events.

A further condition that is not explicitly represented in the expressions for KS and

KI is the existence of an efficiency factor associated with coagulation. For usual turbulent

clouds, Saffman and Turner (Ref. 10) suggest that the probability of coagulation may be

close to unity when particles are about the same size but diminishes rapidly for particles of

very different size. The coagulation efficiency of the KOF is not clear since the particles

are not water droplets. The issue of collection efficiency is difficult to address in this

preliminary assessment, particularly since many of the KOF particles may not be spherical

Hence, for the present we will not include this consideration in our modeL

For this study, we assume an efficiency of unity for all colliding particles. We also

assume that all particles are spherical since the collection kernels have only been modeled

for this case. A preliminary estimate of the collection efficiency for nonspherical particles

suggests that it would be greater than that for spherical particles of the same mass.

A more precise evaluation of the collection kernel(s) could perhaps be obtained by

extending the Saffman and Turner (Ref. 10) analysis to more realistic shapes. However,

until such an analysis becomes available, we will use the spherical models. At the end of

the analysis, it is possible to apply a correction factor to account for enhancement in the

coagulation process. Although we do not explicitly include this correction factor in this

analysis,' it is used in the discussion of results.

1 Actually, the combined effect of collisions and the probability of particles sticking together after the
collision are both imporat On one hand, the use of spherical aerosols appears to underotimate the
collection kernel; however, this is counterbalanced in our model by assuming that the particles stick
oet rin every collision. If estimates of the relevance of turbulent coagulation in KOF turn out to

be important in long-range = ot predicton, it may be necesmy to examine these isses further.
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Using Eq. (2.6), we can make crtain observations about the coagulation dynamics

to obtin an esima of the relevant ime constants as a function of particle density and

dissipation rate. We first note that the mass density, M, where

M -- mf(m) dmn, (2.8)

0remains invariant. This can be demontrated by multiplying both sides of Eq. (2.6) by m

and then integrating over all mass space. Thus, we have

am W f fK(ml. in2 ) (mIn+m2) din dM2

- J JmK(in M2 )dm di 2 *(2.9)

1M2

The fi term in Eq. (2.9) was obtained through the integration Jn 8(m - mi - m2 ) dm.

Since K(mi, m2) and K(m, m2) are symmetric kernels, the right-hand side of Eq. (2.9)

equals zero and thus

-=0 (2.10)

as expectmd

The total number of particles per cm3 is defined as

* N() =f f(mt) dm (2.11)

and is determined from Eq. (2.6) by integration over mass space. We obtain

N - L - J'K",.m1  ,2i f(m1,) din,
mI m2

""- -" f •~l 2 ~, ~. idn
M1 r 2

2 f jK(in, "'2) f(in1 ) f(nm2) dmIn m2 *(.21212

Improved insight into the kinetics of coagulation is gained by introducing a

nwmahd mass density function MDF) , *(m, t), through the equation
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f(m,)= N(t) *(mt) (2.13)

From Eq. (2.11), we deduce the required normalization condition

J*(mt)dm-1 . (2.14)

By introducing V(m, 0, we can cast the analysis in terms of those issues that are
attributed solely to the total aerosol concentration, N(t), and those issues that are due to the
distribution in mass as given by #(m, t). Substituting Eq. (2.13) into Eq. (2.12) gives

aN Nj 2 qt
~F 2 1(t) *(2.15)

where

11(t) =a mf K(m, In 2 ) *(ml, t) *(m 2 t) dm1dm2  (2.16)

For the special situation in which the collection kernel is assumed to be mass-
independent, that is, K(mi, m2) = Ko, a constant, the result is

aN -. (2.17)

The solution to Eq. (2.17) is

N.

1 + (NKýot)2 , (2.18)

where Ni is the initial concentration

We will now make an estimate of 11(t) using the analytical forms of KS(ml, m2)
and K1(m, nm2) from EqL (2.2) and (2.3) in combination with certain experimental results
of Radke et al. (Rdf. 11) and as reported by Porch (Ref. 7), which lead to an assessment of
*(m, 0. Because KS and KI are easier to work with in terms of aerosol radius instead of
mass, it is convenient in computing 11(t) to express the mass distribution in terms of the
aerosol radius distribution. Introducing a normalized particle radius function (NPRF),
g(r, t), and applying the transformation law for probability frequency functions gives

4(m) dm = g(r) dr , (2.19)

where m and r are related by Eq. (2.1). As seen in Eq. (2.19), a knowledge of either * or
g detenmines the other by diffeentiting Eq. (2.1).
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For the turbulent shear coagulation model, the expansion of (rl + r2)3 in Eq. (2.2)

0 give's

KS -(1.3)1k (r,+r 2 )3

=(1.3)1 (1r3 + 3rý r + 3r r2 + r3) (2.20)

Substituting Eq. (2.20) into Eq. (2.16) and using the property that Ks is symmetric in ri

andr2 yieds

0 TI S (t) M 1.31k1 (27+67f)

= 2.6Xk' 7 (1 + 37f/7) (2.21)

where

•=f r3g(r,t)dr = fpl m0(m,t)dm - 7pl , (2.22)

=J r g(r, t) dr , (2.23)

= rg(r,t)dr , (2.24)

and

H= f m n(m, t) dm. (2.25)

M is the average mass of all paicnles as can be seen from the definition

i = f(m, t)dm = M - (2.26)

• n = N(t) Nt t, dm . (2.26)

Let us temporarily assume that 3 r F1/ is much less than unity [we will partially

substantiate this assumption using Radke's data (Ref. 11)]. Then Iqs(t) is approximately

givenby

TIs(t) = 2.6 ck 4- P . (2.27)
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Substituting Eq. (2.27) into Eq. (2.15) gives

S31 (N M) N (2.28) 4

On the other hand, since the total mass density, M = N-5, remains constant during

the coagulation process, turbulent shear coagulation can be approximated by the simple

equation

N=-T"S (2.29)

whereo 3.2 k

s - M (2.30)

The smallest values of TS correspond to small values of ck (high levels of turbulence) and

large values of M. Using M = 5 x 10- g cm- 3 . p = 1.0 g cm-3, and rk = 4.6 x 10-3 s

(conresponding to e = 8000 cm2 s-3) gives an e-folding time of

TS = 2.9x10 s = 81hr , (2.31)

which appears quite long when compared to the time scales of interest in the KOF.

Let us now return to evaluating the term

3 r2 F/=A , (2.32)

which first appeared in Eq. (2.21) and was subsequently neglected in the derivation of

Eq. (2.28). A may be considered a "correction factor" and in the approximation of

Eq. (2.27) has been neglected. However, as shown in Eqs. (2.22) to (2.24), each of the

entities, F, A, and J, involved in the computation of A is time dependent since g(r, t)

changes with time. Essentially, A(t) cannot be determined exactly without solving the

problem exactly. However, it is interesting to explore the conditions under which A is

negligible and under which it is greater than unity, the latter condition requiring modifi-

cation of Eq. (2.28).

An estimate of A can be obtained using measurements of what Radke (Ref. 11)

calls the Nwnber Size Distribudon. In his notation, this quantity is labeled "dN/dR" (see

Figure IH-1) and is defined as the number of particles per unit radius per unit volume. In

our formalism, we express this quandity as N g(r) and have
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dN N Ng(r) .(2.33)

1012

Aporoxkation:

log-

rL 2 x10-6
10'

from Porch (Rof. 7)

............... .............

10- -Jm a1,J , J
10 lr710-6 10-6 1le 10-3 104 l&.1

0Parlie rad! (cm)

Figure 11-1. Number Size Distribution of Particles Observed
In a Forest Slash Fire (Source: Ref. 11)

* The solid line in Figure l- I is dN/dR at the beginning phases of a forest slash fire.
The dashed line in this figure is an approximation of dN/dR, which is necessary for the

Vaprxmt analytical assessment used in our study. The approximation of Figure UI-i
applies in the.radius range extending from alower limit of 2 x 10- 6 cm toan upper limit of
2 x 10-2 cm and describes a distribution that varies as r3

We should emphasiz that the Nwnber Size Dirrribudon of Figure UI-1 is taken at an
instant Of time. However, during the coagulation process, g(r, t) will change with time as
the size distribution shifts to larger particles (Ref. 7). In addition, the g(r) of this figure

* applies to a forest slash fire and would likely be different from the g(r) of the KOF.
Nevertheless, the use of g(r) from Figure 11-I provides a mathematical basis for examining
the importance of the radial shape function on coagulation dynamics, and, therefore, we
assume that g(r)for the KOF is simila to the result for Figure 11-1.
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The sensitivity Of the results to the analytic representation of the aerosol distribution

can be explained by proposing that g(r) for the KOF varies as r-3 betwe' a a lower limit, rL,

and an upper limit, rU. This form of the approximation for g(r) is chosen because of its

mathematical simplicity and because it is representative of aerosol size distributions found

in nature before the onset of significant aging caused by coagulation. For this case, we

have

g(r) - A r-9 (2.34)

where A is the normalization constant determined from the requirement that J g(r) dr = 1.

Applying the n condition gives 0

-1 0 -(rL/ -1)1 
a

A = (s-l)r 1 (? -(rL/rU)" . (2.35)

From Figure 1-1, we haverL -=2 x 10"6cm andru=2x lO-2 cm. The ratiortjru equals

10-4 and is therefore negligible. In this case, we have the approximation

A = (s-1)r!-' (2.36)

For expediency, we also assume that Eq. (2.36) applies for the KOF, although this

assumption can readily be modified using actual data. Lastly, it should be stated that

Eq. (2.34) implies a time-invariant size distribution, which is ck,,.'ly not the case. Despite

this limitation, Eq. (2.34) provides a basis for understanding the important features of the

siue distribution in regard to the coagulation process.

Equation (2.34) readily furnishes the expression for the nth moment

ru

r ( n+I-s (2.37)

where
Q = (rU,/rL) (.8Q / (2.38)

The moments i, , and r3 are readily computed from Eq. (2.37). Inserting the resulting

expressions into Eq. (2.32) gives
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A 3(4-s) (Q 4.4_ 1) (2.39)

We now examine the dependence of A on s in the range where Q >> 1. These
results are shown in Table UI-2 and are obtained by taking the limit of Eq. (2.39) for
Q - rUrL >> 1. This is the range of interest for forest fires but also appears to be the range
of interest for KOF, based on preliminary data obtained from Baumgardner (Ref. 12). It
should be noted that the expressions in Table 11-2 cannot be applied at the integer values of
s a 2, 3. 4. In order to compute A at these values, the limiting form of Eq. (2.39) at s = 2,
S3,4, respectively, must be taken using LHopitalrs rule. Figure 11-2 provides a broader
perspective of the dependence of A on s and Q.

Table 11-2. Dependence of A on 9

s A

1 <9<2 3+) '

(2-s) (3-s) rL

*2<8<3 3(+s) rL
(S-2) (3-s) I •,r

3cS<4,- ['__s r4-s
(s-2) (s-3) ru J

4-cs 3(t4)
(s-2) (s-3)

Examination of Table U-2 shows that the correction factor A is negligible for s > 2
since rL/rU << 1. On the other hand, in the range 1 < s < 2, the variation of A with rU/rL
shows that the cornection factor can be several orders of magnitude greater than unity. This
is also indicated in Figure 1-2. Should g(r) vary as r-9 with 1 < s < 2, the time constant,
Ts, in Eq. (2.30) could be reduced by several orders of magnitude, rendering turbulent
shear coagulation a very important consideration since the effective time scale would be
reduced to approximately I hour. It is important to note that significant coagulation effects
involving time scales under 1 hour and for particles greater than 1 jIm in radius have been

0



computed for the large CAnadian forest fire of 1950 using Radke's results in Figure I-1

(Ref. 7).

LOW+- 0.3

a - 0103(4-i) (Q10(S0l

1.00E-01

1.00E-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 6.0 9.0 10.0 15.0 20.0

S (- mO clnitw)

Figure 11-2. A as a Function of 8 With a a a Parameter

Up to this point, we have only considered the contribution from turbulent shear

coagulation through use of the collection kernel given by Eq. (2.2). We now consider the
contribution from turbulent inertial coagulation in Eq. (2.3). Using Eq. (2.16), the
corresponding parmemr, III, is given by

TII=BJ f (r, + r2 )2 ,r2- g(r,)g(r2 )dr dr2 , (2.40)
rr 2  r) 1 2 dgr)d,&

where

B 2x P 1 (2.41)
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In contrast to the case for turbulent shear coagulation, the double integration over

* r2 is not separable due to the nonanalytic funcof I r- -r. However, it is possible to

obtain a lower bound on 'iT in the following way. Consider the integrals I and 12, where

I = f I (r, + r2 )2 1 -2--2Ig(r,) g(r 2 ) drl dr2  (2.42)

and

12= f (rI +r 2 )2 (rI-r 2 ) 2 g(rl)g(r2 )drldr 2 . (2.43)

11 appears in Eq. (2.40). 12 is similr and has the essential property required of I1, namely,

ensuring that no contribution comes from the domain where r1 - r2.

We now show that I1 > 12. Let

1 = '2 =(r+r2)IrI-r 21 (2.44)

and

b =(r_-r2 ) 2 = (r -r 2 ) (r,-r 2 ) (2.45)

and consider the difference

a -a2-b2

m (r, +r 2)2(r, -r 2 ) r2)2 4rlr2 ! 0. (2.46)

Since a, b are >0, and a2 a b2, we conclude that a 2 b. Therefore,

1 > 2 • (2.47)

A lower bound on II, defined as ni, is thus given by

*ý = 2 -(2.48)

Use of rI* provides a minimum rate of coagulation by inertial turbulence. The integration

Of I2 yields
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2_

Te ratio - (7) h4 is deduced from Eq. (2.37) to yield

1 (72 _S12 
S

S(3-?)2 (QSe) (2.50)

Table II-3 shows the dependence of 0 on s for the range of interest ru/rL Q >> 1, and
Figure U-3 shows 0 as a function of s with Q as a parameter. It should be noted that the

expressions in Table U1-3 cannot be applied at the integer values of s -3, 5. At these
values of s, 0 must be computed from Eq. (2.50) using Liopital's rule.

Table 11-3. Dependence of 0 on a

s 0

5<9s-5)2•

Since the anticipated range of interest is from s 3 to s 5 and for Q >> 1, we
conclude from both Table ll-3 and Figure U-3 that 0 can be neglected in comparison to

unity and thus use the appr,,xi-ion

4

=2r4 -ýLQ( 1) (2.51)=(-s)
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Figure IM-S 0 a= a Function of a With (I as a Parameter

* Using the results ftrom Table 11-2 and neglecting the contribution from A for s8>2
provide a comparison of the relative contribution for shear and inertial coagulation. For
s >2. we have

TS2.6 tk 1 (2.52)

and

* 4z P 1 -1 -,4 (2.53)
Tl tP k "k r

th oij/i~ is given by
S

n* =' (0.54)r (2.54)

•I SA 5,, ,S) "k,

In the subsequent calculations, we use p ng = cm- 3 for the aerosol Particles, and

PAroi-3 g cmp3 . There is rematicovariation of i seas ad function ofsL This quantity
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can vary over several orders of magnitude, depending on the ratio ru/rL (as long as

rU/rL >> 1). For example, when2 <s < 4, Eq. (2.54) reduces to

n; - (50 (4 -s) rU (2.55)
iFS ~ (5 -s) %

while for s > 5 we have

ff--(4) S5 Ik (2.56)

The ratio between Eqs. (2.55) and (2.56) is approximately given by ru/ri, which may
range several orders of magnitude (ecg., rftj - 104 in Figure 11-1).

It is interesting to examine T/1S in the range 2 < s < 4 for a representative large

value of dissipation rate. Using the value Xk = 4 x 10-2 cm from Table H-I, corresponding

toe= 2000, and rU - 2X 10-2 and the value s = 3 deduced from Figure I-I gives

-' = - 135 . (2.57)

If 7 were to be used in the fomalism of Eqs. (2.28) to (2.30), the time constant would be

Ti instead of Ts and would be given by

TI W fLS 2.9 x-- = 2.1x 103s = 35min . (2.58)
1 135 135

The results show that inertial coagulation is the dominant mechanism for particle

frequency functions that contain a substantial fraction of particles greater than I pm. This

conclusion is also consistent with the general observations made by Pruppacher and Klett

(Ref. 9).

-
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III. APPLICATION TO KOF

* The purpose of this section is to examine the geometric boundary(ies) of KOF
where turbulent coagulation no longer contributes to the aging of aerosols. When
combined with the results of other aerosol mass changing processes, this analysis will
contribute to defining the overall spatial region(s) of KOF where aerosols no longer
experience mass changing. These are the only regions where it is meaningful to compare
the concentation prediction capability of current-generation particle transport codes (which
do not include aging effects) to experimental results.

Figure 111-1 depicts the KOF plume behavior for turbulent coagulation consid-
erations. This figure portrays three individual plumes merging into a superplume. The
actual KOF aerosol problem is one in which the particle concentration of a superplume is
forged by the merging of hundreds of individual plumes.

Ear4engsfee
,AAGT N MOUND I'./ t -mt wý~ m wm

Figure Il1-1. Geometric Viewpoint for Coagulation Considerations

In this figure, we hypothesize that there will be significant coagulation effects as the
flames emerge from each individual well since the concentadton/nmass density will be
extremely high. As the individual plumes spread, the concentrations will decrease by
geometric dilution caused by atmospheric turbulence and coagulation. Ultimately, we
propose that the coagulation process becomes insignificant due to decreasing particle

rn-1



concentrations. The surfaces that define this transition are labeled "Coagulation

Boundary." The shaded areas beyond these boundaries are the regions where coagulation

is assumed to be insig t.

Figure M-I suggests the possibility that the merging plumes may again produce

conditions for coagulation; hence, another Coagulation Boundary is shown in the

superplume. However, Sykes (Ref. 13) has questioned the possibility of a secondary

coagulation boundary for the merged plumes on the grounds that this could not occur

without some mechanism for concentrating particles locally. This issue will be resolved

when deiled and reliable dam am available from the field experiment.

The specific objective of this section is to develop a mathematical model for

predicting the downwind aerosol density for either an individual fire or a merged plume

and, from this model, to determine the Coagulation Boundaries shown in Figure MI-1. The
analytical model is developed by combining the turbulent coagulation kinetics described in
Section U with particle transport and ig advection and turbulent diffusion.

In Section II, we showed that the aerosol concentration for a spatially uniform
medium is given by

8N _INnr(t) (3.1)

where 11(t) can be written as

11(t) =J f Kf ml(rl), m2(r2)] g(r,, t) g(r 2, t) drdr2 . (3.2)

Equation (3.2) is the same as Eq. (2.16) but is now written in terms of the radius variables.

Summarizing the results from Section U, we have the following for turbulent shear
coaguanion

=1 2.6,%71 ;5 (1 +A 33

S (3.3)

where

A = 3R F/r . (3.4)

For turbulen inertial coagulaion, we have

Tl* =4x P r 4

9 PA '-2k - (3.5)
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where

e - (3.6)

It should be noted that Eq. (3.3) is a restatement of Eq. (2.21) and Eq. (3.5) is a
restatement of Eq. (2.48) using the exact expression of 12 of Eq. (2.49) instead of

- neglecting 0.

As indicated in Eqs. (3.3) to (3.6), a knowledge of the first four moments of

g(r, ) , r, J, and r4, precisely determines the time evolution of the aerosol density. It
should be stressed that these quantities apply to any functional form of g(r, t). Thus, any
measurements of aerosol properties that could furnish information regarding the first four
moments would be sufficient to determine the aerosol dynamics. The situation becomes
simplified, somewhat, when we have further knowledge of A and 0.

Although it is not explicitly stated, Eq. (3.1) applies to the case in which an initial
number of particles, No, are inserted into the system at time t = 0. The concentration at
subsequent times is given by

No

N= +o (3.7)

where

t

* c=f 1 (C')dt" . (3.8)
0

Equations (3.7) and (3.8) are deceptively simple because they assume a knowledge
of g(r, t). As we mentioned at the outset of Section IL g(r, t) cannot be determined without
solving the entire problem. However, estimates of the significant times scales involved in
the coagulation process can be obtained by using approximate forms of g(r, t) or real-time
measurements of g(r, t. It is through the latter that we consider turbulent coagulation in

the context of the KOF.

In the remainder of this section, we will calculate the aerosol concentration as the
particles emerge from a single well. The mathematical model developed for this case is
directly applicable to the superplume, with the appropriate change of coordinates.

M-3



When the small-scale turbl•ent fluctuatims are averaged out, the Eulerian equation

for the aermsols is given by the extension of Eq. (2.6) to now include convection. We have

"WM) fj) f fK(m1 . m2)f(m )~ 2 Omm- 2  dm,11  dlC~~~~~m m2 1)fM)8m-I 22

- frm)fK(mm 2 )f(m 2 )dm2  ( 3.9)
m2

where U is the average velocity and V is the gradient operator. The right-hand side of

Eq. (3.9) is the same as that of Eq. (2.6). For brevity, we have suppressed the explicit

dependence of f on the space variable, i, and on time, t. For example, f(m) is really

f(m.X 0.

For an individual plume, Eq. (3.9) is solved by matching the solution to the source

emission at the origin (location of the burning well). If the source emission does not vary

with time, Eq. (3.9) will also be time invariant and, hence,
oaf(m, Z, t)Xt = 0. (3.10)

The space dependence of f(m), ] is found by constructing a simplified geometric

model of the plume as shown in Figure M-2. In this figure, we approximate the plume as

a tube of variable cross section, A(q), in which all the particles move with average velocity,

U, normal to the surface, A. The concentration is assumed to be uniform across the area.

The coordinate system is constructed so that the q-axis is always directed along the

direction of U. If [•l is the magnitude of U along the q-axis, the divergence term in

Eq. (3.9) becomes
V • Uf(m, R-)] = [U(q) f(m, q)] (3.11)

since, by construction, f(m, q) does not vary in directions normal to q.

We now let

f(m, q) = N(q) ý(m, q) , (3.12)

where N(q) is the aerosol concentration (cm-3) and ý(m, q) is the NMDF (expressed as a

function of the space coordinate, q, instead of a function of time).
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A(q) w AREA EXPRESSED AS

00000 FUNCTION OF q
U(a) a WIND SPEED EXPRESSED

AS FUNCTION OF q

14(q) = AEROSOL CONCENTRATION
EXPRESSED AS FUNCTION
OF q

Figure 111-2. Model for Individual Plum.

Using Eqs. (3.10) and (3.11) in Eq. (3.9) and then integrating over mass space

using the techniques developed in Section II gives

a - (ANU)
UT(q) ' (3.13)

where the q-dependent time "constant," T(c), is given by

T(q) = 2 (3.14)
N(c)i)(q)

and

1 1(q) = f fJK[ml(rl) m2(r 2 )] g(rl'q) g(r 2 ,q) drldr2 " (3.15)

The expressions for ci corresponding to turbulent shear and turbulent inertial coagulation

are given by Eqs. (3.3) and (3.5), respectively. As in Section I, we have also intoduced

an NPRF, g(r, q), through the transformation

*(n, q) dq = g(r, q) dr. (3.16)

Further simplification is possible by using the conservation of mass. Multiplying
Eq. (3.9) by m and then integrating over mass space and area gives
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S(u(q) R(q) A(q)) - , (3.17)

where M(q) is the mass per cm3. Equaion (3.17) is analogoms to Eq. (2.10). UMA is the
total mass emission rat (Ss-) from a burning well, and as long as the flux tube of
Figure M-2 encompasses all the mass, we must have the equality

U(q) M(q) A(q) - R,, (3.18)

where Rm is the mass emission rate from the well expressed in g s-1.

The next step in determining N(q) is to evaluate A(q). We assume a circular plume
with radius, R-, and area,

2
A(q) = x R2(q) (3.19)

2.
o is approximated by the equation

t
"2 r

= 2 fD(t ) dt' (3.20)
0

where D is the turbulent diffusion constant evaluated along the path. Following basic
theoretical arguments discussed by Tennekes and Lumley (Ref. 14), we assume the

relationship

D(t) - Ro(t) U(t) (3.21)

which applies for times long enough for many independent eddies to establish fully
developed turbulence.

With this assumption, Eq. (3.20) can be written as a precise equation:
D=aRU , (3.22) •

where "a" is an experimentally deduced constant, as yet undetermined. Inserting
Eq. (3.21) into Eq. (3.20) and differentiating the latter gives

dR

Integrating Eq. (3.23) along the path yields
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* Ro(q) = a f U(t)dt - aq . (3.24)
0

For the turbulent diffusion case considered, the radius of the plume is observed to be
proportional to the distance traveled.1

* In the regions described by Eq. (3.21), it is recognized that Eq. (3.24) is an
approximation since the diffusion rates for horizontal and vertical diffusion are different.
For the KOF, it has been observed that the plumes are typically constmined between 1 and
3 km in thickness. When the top of plume slows its rise and stabilizes from the initial

* buoyancy effect, the path variable q can be replaced by the horizontal axis in the direction
of flow, x; the vertical dimension can be replaced by a constant value, Ah = 2 km-, and the
horizontal dimension normal to the flow can be allowed to grow at a turbulent diffusion rate
given by

Sy-=bx , (3.25)

where b is another experimentally deduced quantity. If it is desired, the approximation for
A(q) could be improved by using real-time KOF experimental data.

However, until such KOF experimental data become available, we will use the
circular model described by Eq. (3.24) with the constant "a" determined from previous
experimental data. Figure M1I-3 shows the horizontal mean cloud half-width, ry(x), for a
stack plume as a function of downwind distance, x, from the source (Refs. 15, 16).
Lines A through F correspond to different levels of stability. Taking the "average" of the
curves gives the approximate relationship

OV = 0.1 x . (3.26)

Identifying the ay and x of Eq. (3.26) with the Ro and q, respectively, of
Eq. (3.24) gives

R(q) - 0.1 q (3.27)

and

A(q) = XR2 - 3.14 x 10-2 q2 cm2 (3.28)

L Sykes (Ref. 13) has pointed out that the linear behavior of Eq. (3.24) is an early time" rest but
* may well extend to dimemnim nea global scales. For very lmg spon times, the hor tal

growth will vary with the qmot of the disumce.
M-7
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during the initial stages of plume growth from the burning welL For numerical simplicity,

the path length can be measured in kilometers instead of centimeters. We therefore write
q = 105 5, where q% is the distance in kilometers from the source, and use the equation

A(q) = 3.14 x 108 q . (3.29)

10 IU

DISTANCE DOWNWWD, km

Figure 111-3. Horizontal Mean Cloud Half-Width ay(X) for Stack Plumes as a
Function of Downwind Distance From the Source (Source: Ref. 16)

We now write U = 28 Uw, where Uw is the windspeed in km/hr, and insert

Eq. (3.29) into Eq. (3.18) to obtain

= (1.14) x 10-1° Rm (3.30)
Uwq; d

At this point, it is interesting to estimate the mass densities calculated from

Eq. (3.30) for an "average" burning well and compare them with the values used by Porch
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(Ref. 7). If RM is the aerosol emission rate for all the burning wells and W is the total

number of burning wells, then the average mass emission rate per well, R-m, is

S= RM/W g s (3.31)

We do not currently have information regarding the maximum emission rates for the

largest individual fires, and there appears to be some uncertainty regarding both the total
emission rate, RM, and the average emission rate. Bauer (Ref. 1) has estimated RM to be

45,000 metric tons per day, while Hobbs and Radke (Ref. 5) have estimated RM to be

3400 metric tons per day. However, it is not clear whether these numbers apply to the

same number of burning wells and other similar conditions. For lack of more complete

information, we take the average of the two references and use an emission rate of 24,000
metric tons per day, which converts to RM = 2.8 x 105 g s-1. If we assume that 300 wells

are burning,2 the average emission rate per well is

2.8 x 10d g 1
* 300 - 930 g s'' (3.32)

We may anticipate that all wells will not be burning at the same rate and that some wells

may have an emission rate far exceeding that given by Eq. (3.32).

In order to examine a hypothetical "worst-case" scenario, we use a value of

-9.3 x 103 g s-I in the calculations, which is an order of magnitude higher than the

average of Eq. (3.32). At a distance of 1 kilometer from the well (qk = 1), with a

* windspeed of 10 kmhr (Uw = 10) and well emission rate Rm = 9.3 x 103 g s-1 , the
mass density, W!, equals 1.06 x 10-7 g cr-3 , which is a factor of 2.12 higher than the

maximumvalue of 5 x 10-8 g cm- 3 used by Porch (Ref. 7). For the same values of qk and

Uw, but with Rm = R *i 930 g s-l, i1.06 x 10-8 g cm- 3 , which is consistent with
Porch's (Ref. 7) range of interest, 5 x 10-9 to 5 x 10-8 g cm- 3 . Using Uw = 10,

Rm = Rm, but this time using qk = 10, gives i= 1.06 x 10-9 g cm-3 , which is a factor of

4.7 lower than Porch's (Ref. 7) minimum of 5 x 10-9 g cm- 3. The net result of this

discussion is the reassuring observation that the values of M calculated for a realistic range

of conditions are consistent with the values previously considered in a large forest fire.

We now return to the main thrust of this section, which is the determination of

aerosol density, N(q), from Eq. (3.13). Using the result

2 In dihe May/June 1991 time period, it is estimated that between 500-600 welns were burning.
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Ncqr(q) N -- (q) (q) (3.33)

in Eq. (3.18) gives
3RM

N(q) = -- (3.34)4xp •AU

Substituting Eq. (3.34), in conjunction with the expressions for Ti(q) obtained from 0

Eqs. (3.3) and (3.5), respectively, in Eq. (3.14) gives the following expressions for T(q)
for turbuent shear (Ts) coagulatim and rbulent i•Mern (fd) coagulaidon:

8xp AUck
Ts(q) w 7.8 Rm fs ' (3.35)

where

fs=1+A , (3.36) •

and

Ti(q) = Rm • (3.37)
R r,

where

r (1 -0)

"" I (3.38)

Using either of the expressions Ts(q) or TI(q) for T(q) in Eq. (3.13) yields the
density along the path. Solving Eq. (3.13) for "ANU" gives

N(q) = (A0 NA(qU) rc ' (3.39) 0

where

rc =(3.40)

and
_ q '

A(q) U(q')T(q) (3.41)
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The initial values Ao, No, and Uo are taken at the location qo, where the

Sapproximation of Eq. (3.27) is valid or, equivalently, where the initial jetting action and

buoyancy effects of the well are dissipated. That is, our turbulent diffusion model only

considers those effects attributed to usual atmospheric processes.

For the purposes of this analysis, we must make an assumption about the way

U(q'), and T(q) are treated in the integration of Eq. (3.41). Until experimental data

become available, we approximate these quantities as "path-averaged" constants. On the

other hand, we do include the variation of A(q) from Eq. (3.27). The results for turbulent

shear (S) coagulation and ambulent inertl (I) coagulation are as follows:
Is Is

A S - (3.42)

where

* 10 Rm fs (3.43)

ts P

and

= i _ q ,(3.44)

where

5.3 Rmr, (3.45)
I=P A 'k k U2 

(.5

In the absence of coagulation, the spatial distribution of density is given by

NI(q) = U(q) A(q) (3.46)

This spreading behavior of the plume is attributed to atmospheric diffusion. NI(q) can be

estimated from the mass ejection using the equation

M=HN (3.47)

in Eq. (3.18). The result is

N = U(q) q)A • (3.48)

rn-li
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NI(q) is the particle density that would exist in the absence of coagulation. Since rc < 1,

coagulation reduces the aerosol concentration beyond ordinary geometric dilution. Coagu-
lation is quantitatively manifested by the parameters Is or I1, which pertain to turbulent

shear coagulation and turbulent inertial coagulation, respectively. If we temporarily let

I - IS or i1, then the coagulation contribution to density can be written as

7 =exp- [(Uqo-Uq)] . (3.49) •

which is observed to be less than or equal to unity for the prescribed range q > qo. The

density at qo is

) (U (qo)A(qo) (3.50)

It is difficult to theoretically predict qo since the processes describing the aerosol
behavior as the oil emerges from the well are extremely complex. However, estimates of

qo can be obtained from visual observations. While a knowledge of qo is required for
determining the absolute level of aerosol concentration for q > qo, it does not appear to be a
critical factor in determining whether to consider coagulation effects when interpreting
transport behavior. What is important is the spatial variation of rc as a function of q when

compared to other transport processes.

It is now worthwhile to examine certain features of N(q), including predictions of
aerosol density close to the source and the apparent limiting effects of coagulation. Based

on crude visual interpretations of the KOF photographs, we estimate the initiation of
"conventional" atmospheric diffusion processes to begin between 0.1 and 1.0 kilometers

from an individual burning well. For orientation, we compute Nj(qo) at qo = 105 cm

(I km) for a windspeed Uw = 10 km hr-l, for Rm = Rm, and for the average mass,

H - (4xp ?3t) - 6.7 x 16l3g ], as determined from the size distribution defined

by Eq. (A.6) of Appendix A. Inserting these values in Eq. (3.48) gives NI (at 1 kin) =
1.6 x 105 particles per cm3 . This value of density appears to be consistent with the results

of Hobbs and Radke (Ref. 5) at close-in ranges.

As a matter of theoretical interest, it is worthwhile to examine the behavior of
aerosol density as a function of emission rate, Rm. By the way of example, we evaluate

the asymptotic behavior of N(q). In the limit where q >> I and q > qo, the coagulation
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functiofi rc approaches the constant ro - exp (-1/qo). From Eqs. (3.43) and (3.45), we

note that both is and Ii are proportional to Rm. Therefore,

I - aRm. (3.51)

where a is the proportionality constant [for example, a = (5.3 rl/pA~kXkU 2 ) in the case of

turbulent inertial coagulation]. Substituting Eq. (3.51) into r. yields the following result

for the asymptotic behavior.

Nas= iV (q) A'q) A.] (3.52)

where

X = qO/a .(3.53)

Keeping all other factors the same, N has a maximum with respect to Rm. This

maximum results from the competing factors of increased emission and reduction by

coagulation. Nas maximizes at Rra = 1, with the maximum value given by

SM (0.37) 15
( m = U(q) A(q) (3.54)

As we indicated earlier, the main issue regarding the relevance of turbulent
coagulation is to examine its effect on the interpretation of transport behavior. More

specifically, we want to ensure that N(q) does not change appreciably due to turbulent

coagulation over distances that are significant in the interpretation of transport. This means

that we would like the function rc to remain essentially constant. This condition is

examined most easily by plotting r" as a function of q with qo and I as parameters.

To obtain an estimate of values of 1 that are of interest, we calculate Is and lI for the

following set of parameters3:

Rm =R- =9.3x1O3 gs" (a)

p lgmcm-3  (b)

U =278 cm s7' (Uw = 10 km hr-) (C)

3 lroved values fw dtMe pmunet•. will be avanable when doe measued K01 dam arecolidaed
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fs = (d)

tk =4.6xl0 3 s(fore=8MW0cm2s-3) (e)

Xk =2.8 x 10 2 cm (fore= 8000cm2 s"3) (f)

p -= 10-3 g cm-3 (g)

S= 1-2cm (h) (3.55)

Inserting these values into Eqs. (3.43) and (3.45) gives

S= 2.6 m (3.56)

and

-- 0.49 km . (3.57)

For the conditions of Eq. (3.55), the small value of IS indicates that turbulent shear

coagulation will not be a factor ýu transport since rc is essentially constant at Tc = I for all

values of q of interest Moreover, it is hard to imagine a set of realistic parameters that

could change the foregoing conclusion.

On the other hand, Eq. (3.57) shows that 11 is in the kilometer range. Considering

the approximations and the unknown factors that have gone into the calculation of /I, it is

not inconceivable that/l could be as high as 10 km under some set of circumstances. This

could have an impact on the selection and interpretation of data used for transport
predictions. Turbulent coagulation will have an effect on the prediction and interpretation
of concentration if rc varies significantly over the range of interest.

The precise criterion about what constitutes an acceptable degree of spatial variation

remains to be defined for the Kuwaiti Oil Fure Field Experiment (KOFFE). From the

analytical form of rc (Eq. 3.49), there will be some minimum value of q, defined as qmin,

beyond which variations of rc with q will be very small Moreover, since the dependence

of rc on qo only affects the magnitude of concentration through the factor exp[--//qo], it

follows that qnin will depend only on 1.

John Cockayne (Ref. 17) has suggested a possible criterion for determining qmin.

Cockayne's criterion is that turbulent coagulation will not be important in the range

q qmin if we have the condition
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>rc(2cL:~) 2 0.9, (3.58)

where qmin is the distance beyond which In r€ changes by less than 10 percent over qmin.

Using Eq. (3.49) in Eq. (3.58), we easily deduce

1.1 > C 1/2 +1/2 qmliaq (3.59)

which leads to the result

qn 51 (3.60)

Thus, if 1 = 1 -- 0.49 km is used from Eq. (3.57), we have qmin - 2.45 km. This

. of qmin indicates that turbulent inertial coagulation ceases to be important for the

average single well only 2.45 km downstream. On the other hand, if I1 is on the order of

10 km, then turbulent inertial coagulation could be very important at the formation of the

upMplume.

In the analytical model of this study, we have reduced the dependence of the spatial

variation of turbulent coagulation to the two parameters qo and 1. Recognizing that there is

some uncertainty in the numerical values of these quantities, it is instructive to visually
examine the dependence of rc(q) on qo and II. This will provide a preliminary indication of

the range of values for qo and 11 that may be important in assessment of transport issues.

The results are shown in Figures M-4 and M-5. All of these curves begin at q = qO.

Figure 11-4 shows the behavior of rc as a function of q for assumed values of

qo = 0.1 km and 11 = 0.01, 0.1, and 1.0 km, respectively. As predicted, increasing the
value of II for a fixed value of qo leads to increasing reduction of the asymptotic value of

rc. When (/9/qo) = 10, the asymptotic value of rc is less than 10-4 of its initial value. The

case for qo = 0.1 and I4 = 10.0 is not shown because the excessive reduction in aerosol
density for this set of values diminishes interest in this calculation.

Figure III-5 shows the behavior of rc as a function of q for assumed values of

qo = 1.0 km and Ii = 0.1, 1.0, and 10.0 kmn. These results scale similarly to those in
Figure 111-4 since the ratios of 11qo are the same in each case. In addition, the respective

asymptotic values of rc = exp - [/l1qo] are also equal. However, as shown in the latter set,

the scale is stretched out and leads to significant changes in density extending into the tens-

of-kilometers range.
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IV. CONCLUSION

In this paper, we focus on the KOF of 1991 to investigate one of several possible

mass-changing processes that can limit the applicability of the current generation of

transport codes, i.e., turbulent coagulation. The purpose of this paper is to make a

preliminary assessment of the conditions where turbulent coagulation is or is not an

important factor. Clearly, if airborne particles continue to coagulate in appreciable amounts

during the transport phase, they cannot be unequivocally "tagged," and this potentially

diminishes the validity of a transport calculation.

The approach is to develop an analytical formulation of the spatial behavior of

aerosol density as the particles are carried along the turbulent wind field while

simultaneously undergoing coagulation. Using approximations for the shape of the aerosol

radial size distribution based on the large Canadian forest fire of 1950, we have been able

to compute the time and space behavior of aerosol density for turbulent shear coagulation

and turbulent inertial coagulation. The latter is nearly two orders of magnitude more

effective than the former for the conditions of the KOF.

For a single source, the analysis shows that the upstream density can be written as

N = NIN2, where N1 is that part due to ordinary atmospheric transport processes and N2 is

that part attributed to coagulation. N2 depends on the source of emission, windspeed,

atmospheric turbulence, and the characteristics of the coagulation process and behaves as

exp(--I/q), where 11 is the characteristic dimension associated with coagulation and q is the

upstream distance.

Using approximate numbers for the conditions of the KOF, 11 can range up to

several kilometers and, in some cases, may be as large as 10 km. However, in the

computation, there are a large number of unknown factors that can be determined from the

experimental data. More accurate data would improve the estimate of the coagulation

distance and, hence, define more precisely the regions where a self-consistent set of

measurements can be integrated with valid transport models.

The theoretical models for the turbulent collection kernels are based on spherical

shapes for the aerosol particles. In oil fires, however, the soot particles are usually not
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spherical but are mom strand-like. Perhaps these particles can be better described using the

theory of fractals.

Preliminary evaluation suggests that strand-like particles tend to interact more

aggressively. In turn, this interaction would lead to a larger collection kernel that would

manifest itself in a large 11 and would make turbulent coagulation an important factor in

defining the spatial regions where transport codes can be compared with theoretical models.

Improvements to this initial theory should include fractal considerations and

improved approximations for the aerosol size distribution function, turbulence levels,

inhomogeneities within the plume, and collection efficiency.
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APPENDIX A
CALCULATION OF MOMENTS OF NORMALIZED

PARTICLE RADIUS FUNCTION WHEN s = 3

When rU >> rL, the normalizing constant, A, is given by the approximation

A (A.1)
S@

For s -3, we obtain

A 2r_ (A.2)
L

and, hence,

2

g(r) = -- (A.3)

Using the fact that rU >> rL gives the following results for the first four moments:
ru

FfA r2 =2rL (A.4)

ru

ruUL

ru

r AI d L2 r2 (A.7)

The values of rL =2 x 10-6 cm and rU =2 x 10-2 cm are used in all of the

calculations.
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